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Screw conveyers and presses find wide application in industry. In
several papers dealing with the theory of these devices [1,2] the con-
siderable energy dissipation and the effect of temperature on fluid
viscosity had not been taken into consideration.

An attempt is made in this article to allow for these effects in a
simplified flow model, generally accepted as the first approximation.
This model consists of a straight rectangular channel with one sliding
wall and a fluid in rotary motion in which there is no pressure gradient
along the screw axis, i.e., a screw conveyer free of load is considered.

We assume that the dependence of viscosity on temperature is sub-
ject to either the exponential [3] or hyperbolic laws

=po exp (U/ RT), p=po (1 + 0 (T — T, 1)

where gy, U, o, and T, are constants, R is the gas constant, and T
is the absolute temperature.

We locate the coordinate origin at the left corner of the rectangu-
lar channel section of dimensions ¢ and b (b < ¢), and we express all
dimensions in terms of b, The velocity is given in terms of the channel
upper (sliding) wall velocity vy along the z-axis. Considering the effects
of dissipation, but neglecting heat transfer along the channel axis be-
cauge fluid velocities in screw conveyers are low, we write the equa-
tions of motion and energy conservation in the case of the exponential
law (1) in dimensionless form as
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Where w and 0 are, respectively, the dimensionless velocity and
the temperature; 8 and § are dimensionless parametess; A is the thermal
conductivity coefficient.

The boundary conditions for the velocity are: w =1 aty =1, and
w=0atx=0, x= a/b, and y = 0.

Various conditions can be iimposed on the temperature depending
on the circumstances, namely:

(1) The temperature of the screw hub and that of the channel are
equal, T = Ty; then everywhere along the boundary 6 = Q.

(2) The screw hub temperature is T = Ty, while that of the channel
is T=Ty; then® =0aty=1, and 6 =6, along the remammg part of
the boundary.

(3) The screw hub temperature is T = Ty and the channel is ther~
mally insulated, i.e., 8T/0n = 0; then at y =1 we have 8 = 0 and
06/0n = 0 along the remaining part of the boundary.

We substitute in Eq. (2) as follows:
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Hence, the function u will satisfy the Laplace equation

Az =0.
5
From the integrability of system (4) with respect to w it follows that
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but then [4]
=Y. (7

Substituting (4) and (7) into (3), and using (§), we obtain for ¥
the ordinary differential equation

42y ¥
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If the viscosity is strongly affected by temperature, § « 1 [5],
and we can write

k4
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The solution of Eq. (9) is [6]

Y=Infcich2e, Vo m— )], (10)

where ¢; and ¢, are integration constants, and ¢; > 0.
From (4) and (7) it follows that

w:Se‘*’du+c_ (i1
Substituting (10), we obtain
w=o V2/6h e VIEB (u — 20) + ¢, 12)

Obviously u must be also subject to the following boundary condi-
tions: u = uy for w = 0, and u =uy for w = 1, where u; and u; are un-~
known constants.

A direct check shows that u; does not appear in the final expres-
sions for the velocity and temperature fields, hence we immediately
assume uy = 0. We thus have four arbitrary constants needed for satis~
fying conditions along the boundary. With conditions (1) for the tem~
perature 6 = ¥ satisfied. we obtain the follow~in system of four equa-
tions:
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Solving this system for ¢, ¢y, cp, and uy, we obtain

=Yy, c1== V1550, ca="suo, (14)
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The cases of boundary conditions (2) and (3) are dealt with in a
similar manner.

Finally we have for the velocity and temperature fields the fol-
lowing dimensionless expressions:

0=In(1+38)ch 2, V(BF0)0(x—Ysup), (16)
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where ug is defined by (15), and u is the solution for the boundary-
value problem of the Laplace equation with boundary conditions u =
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=ygaty=1, andu=0atx=0, x=a/b, and y = 0, written in the
form

4ug sh (2n + 1) nyb /a sin(2n 4-1) nbx/a
=T Z sh(2n L 1) b/ a In 1

(18)

Once the velocity field (17) is known, the fluid flow rate can be
determined by numerical integration.

We now write the expressions defining the velocity and tempera-
ture fields in the case of hyperbolic dependence of viscosity on tem-
perature (1), such as with boundary conditions (2)

01 (2 46y)
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in which u is defined by Eq. (18), but uy is different and given by
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Here the dimensionless parameter § = pgvgoc/x.
The author wishes to express his thanks to N. N. Gvozdkov for the
formulation of this problem.
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