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Screw conveyers and presses find wide appl ica t ion  in industry. In 
several  papers deal ing with the theory of these devices [1, 2] the con-  
s iderable  energy dissipation and the effect  of t empera ture  on fluid 

viscosity had not been taken into consideration.  
An a t t empt  is m a d e  in this a r t i c l e  to al low for these effects in a 

s impl i f ied  flow model ,  genera l ly  accepted  as the first approximat ion.  
This mode l  consists of a straight  rec tangular  channel  with one sl iding 
wal l  and a fluid in rotary mot ion  in which there is no pressure gradient  
along the screw axis,  i . e . ,  a screw conveyer free of load is considered. 

We assume that  the  dependence of viscosity on tempera ture  is sub- 

j ec t  to ei ther  the exponent ia l  [3] or hyperbol ic  laws 

= ~o exp (U/ :TIT) ,  ~ = [to [1 q- ~z (T - -  To)] -r ,  (1) 

where #0, U, a ,  and T O are constants, R is the gas constant,  and T 
is the absolute temperature .  

We loca te  the coordinate origin at  the lef t  corner of the rec tangu-  
lar chamnel sect ion of dimensions a and b (b -< a), and we express a l l  

dimensions in  terms of b. The ve loc i ty  is g iven  in terms of the channel  
upper (sliding) wal l  ve loc i ty  v0 along the z -ax is .  Considering the effects 

of dissipation, but  neg lec t ing  hea t  transfer along the channel  axis be -  

cause fluid ve loc i t i es  in  screw conveyers are low, we write the equa-  
tions of mot ion  and energy conservation in  the case of the exponent ia l  

Iaw (1) in dimensionless  form as 

0 low - - 8  0 Ow 
~ ' ~ / ~ - x  exp t - - ~ - ~ )  -+-7~ (27 

v U RTo 
w =  v.~o- , 0=-~T-~o~(T- -To) ,  [3=--~-, 

9ovo~g U 
6 = ~ e x p ~  �9 (3) 

Where w and 0 are, respect ively ,  the dimensionless ve loc i ty  and 

the  temperature;  /3 and 6 are dimensionless parameters;  k is the the rmal  
conduct iv i ty  coeff ic ient .  

The boundary conditions for the ve loc i ty  are: w = 1 at  y = 1, and 
w = 0 a t x = 0 ,  x =  a /b ,  and y =  0. 

Various conditions can be imposed on the tempera ture  depending 
on the c i rcumstances ,  namely :  

(1) The tempera ture  of the  screw hub and that  of the channel  are 
equal,  T = To; then everywhere along the boundary 0 = 0. 

(2) The screw hub tempera ture  is T = T 0, whi le  tha t  of the channel  
is T = Ti; then 0 = O at y = i, and 0 = O~ along the remain ing  part of 
the boundary. 

(3) The screw hub temperature  is T = T o and the channel  is ther-  
m a l l y  insulated,  i . e . ,  0T /0n  = 0; then at  y = 1 we have  0 ; 0 and 
00 /0n  = 0 along the remain ing  part  of the boundary. 

We substitute in Eq. (2) as follows: 

Ow Ou O Ow Ou 0 
Ox - -  Ox exp i + ~ 0 '  Of : ~ - y  exp I + B O "  (4) 

Hence, the function u wi l l  satisfy the Laplace  equat ion 

Au = O. 
(5) 

From the in tegrab i l i ty  of system (4) with respect  to w i t  follows that 

O0 Ou O0 Ou (6) 
c~y Ox - -  Ox Oy ' 

but then [4] 

0 = -~ (u).  U )  

Substituting (4) and (7) into (3), and using (5), we obtain for 
the ordinary d i f ferent ia l  equation 

d~gr ~Ir 
d ~  + 6 exp ~ =  0.  (8) 

If the viscosity is strongly affected by temperature ,  8 << 1 [5] ,  

and we can  wri te  

d~F 
duS + 8 exp ~F = O. (9) 

The solution of Eq. (9) is [6] 

= In [c: ~ ch ~" cl 1/%/~ (= - -  c~)], (10) 

where c i and c z are integrat ion constants, and c i > 0. 
From (4) and (7) i t  follows that  

w = I e~" du -t- c .  (11) 

Substituting (10), we obtain 

(i2) 

Obviously u must  be also subject  to the  following boundary condi-  

tions: u = ul for w = 0, and u = u 0 for w = 1, where u I and u 0 are un- 

known constants. 
A direct  check  shows that  u 1 does not appear in  the f inal  expres- 

sions for the  ve loc i ty  and tempera ture  fields, hence  we i m m e d i a t e l y  

assume u 1 = 0. We thus have  four arbitrary constants needed for satis-  
fying conditions along the boundary. With conditions (1) for the t e m -  
perature 0 = r satisfied,  we obtain the fol iow-in  system of four equa-  
tions; 

= r u  th ~i VV.-~- , . . ,  

Solving this system for c, c 1, %, and u~, we obtain 

c = :/-", cl = l f i - - +  1/8 8,  c~ = !12 '~o, (14) 

s [ V i  + V~ ~ + gV~ l .  (is) ~'~ = V ( 8 ~  in 

The cases of boundary conditions (2) and (3) are deal t  with in  a 
s imi la r  manner.  

Final ly  we have  for the ve loc i ty  and tempera ture  fields the fol- 
lowing dimensionless expressions: 

8 = in (t q- 1/8 g) c h ~  1/4 V N  + 5) 6 ( u - : t / 2  uo), (16) 

w = V= + V~ g i - - ~ i ~  ~ th t f ig -~  8) 8 (~ -- lk .0) V,, (17) 

where u 0 is defined by (15), and u is the solution for the boundary- 
va lue  problem of the Laplace  equat ion with boundary conditions u = 
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=uo a t y = l ,  a n d u = O a t x = O ,  x =  a/b, a n d y = O ,  written in the 
forlTl 

4uo co sh (2n + l) ~yb / a sin (2n + l) ~bx / a 
u=-~-  y, ~ g . ~ ? ~  2 . + t  (is) 

Once the velocity field (17) is known, the fluid flow rate can be 
determined by numerical integration. 

We now write the expressions defining the velocity and tempera- 
ture fields in the case of hyperbolic dependence of viscosity on tem- 
perature (1), such as with boundary conditions (2) 

0 = (1 + 0r) cos ]/8-u + 8 -- 01 (2 + 0,) sin u -- t 
2 lr~- 

(19) 

t + 0 1  . .r~- ' 8 - -01(2+01) (1 - -cos ] / ' 8 -u ) ,  (20) 
w = - - - ~  sm F o  u-l- 28 

in which u is defined by Eq. (18), but u o is different and given by 

t . ( 2 + 0 1 ) * - - 8  
u0 = ' ~  Arccos (2 + Ox) ~ + ~" (21) 

Here the dimensionless parameter 6 = g0vga/k. 
The author wishes to express his thanks to N. N. Gvozdkov for the 

formulation of this problem. 
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